7 resultados para Climatic data simulation

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of different factors (spawning biomass, environmental conditions) on recruitment is a subject of great importance in the management of fisheries, recovery plans and scenario exploration. In this study, recently proposed supervised classification techniques, tested by the machine-learning community, are applied to forecast the recruitment of seven fish species of North East Atlantic (anchovy, sardine, mackerel, horse mackerel, hake, blue whiting and albacore), using spawning, environmental and climatic data. In addition, the use of the probabilistic flexible naive Bayes classifier (FNBC) is proposed as modelling approach in order to reduce uncertainty for fisheries management purposes. Those improvements aim is to improve probability estimations of each possible outcome (low, medium and high recruitment) based in kernel density estimation, which is crucial for informed management decision making with high uncertainty. Finally, a comparison between goodness-of-fit and generalization power is provided, in order to assess the reliability of the final forecasting models. It is found that in most cases the proposed methodology provides useful information for management whereas the case of horse mackerel is an example of the limitations of the approach. The proposed improvements allow for a better probabilistic estimation of the different scenarios, i.e. to reduce the uncertainty in the provided forecasts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An individual-based model (IBM) for the simulation of year-to-year survival during the early life-history stages of the north-east Atlantic stock of mackerel (Scomber scombrus) was developed within the EU funded Shelf-Edge Advection, Mortality and Recruitment (SEAMAR) programme. The IBM included transport, growth and survival and was used to track the passive movement of mackerel eggs, larvae and post-larvae and determine their distribution and abundance after approximately 2 months of drift. One of the main outputs from the IBM, namely distributions and numbers of surviving post-larvae, are compared with field data as recruit (age-0/age-1 juveniles) distribution and abundance for the years 1998, 1999 and 2000. The juvenile distributions show more inter-annual and spatial variability than the modelled distributions of survivors; this may be due to the restriction of using the same initial egg distribution for all 3 yr of simulation. The IBM simulations indicate two main recruitment areas for the north-east Atlantic stock of mackerel, these being Porcupine Bank and the south-eastern Bay of Biscay. These areas correspond to areas of high juvenile catches, although the juveniles generally have a more widespread distribution than the model simulations. The best agreement between modelled data and field data for distribution (juveniles and model survivors) is for the year 1998. The juvenile catches in different representative nursery areas are totalled to give a field abundance index (FAI). This index is compared with a model survivor index (MSI) which is calculated from the total of survivors for the whole spawning season. The MSI compares favourably with the FAI for 1998 and 1999 but not for 2000; in this year, juvenile catches dropped sharply compared with the previous years but there was no equivalent drop in modelled survivors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last 60 years climate change has altered the distribution and abundance of many seashore species. Below is a summary of the findings of this project. The MarClim project was a four year multi-partner funded project created to investigate the effects of climatic warming on marine biodiversity. In particular the project aimed to use intertidal species, whose abundances had been shown to fluctuate with changes in climatic conditions, as indicator species of likely responses of species not only on rocky shores, but also those found offshore. The project used historic time series data, from in some cases the 1950s onwards, and contemporary data collected as part of the MarClim project (2001-2005), to provide evidence of changes in the abundance, range and population structure of intertidal species and relate these changes to recent rapid climatic warming. In particular quantitative counts of barnacles, limpets and trochids were made as well as semi-quantitative surveys of up to 56 intertidal taxa.Historic and contemporary data informed experiments to understand the mechanisms behind these changes and models to predict future species ranges and abundances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information on past trends is essential to inform future predictions and underpin attribution needed to drive policy responses. It has long been recognised that sustained observations are essential for disentangling climate-driven change from other regional and local-scale anthropogenic impacts and environmental fluctuations or cycles in natural systems. This paper highlights how data rescue and re-use have contributed to the debate on climate change responses of marine biodiversity and ecosystems. It also illustrates via two case studies the re-use of old data to address new policy concerns. The case studies focus on (1) plankton, fish and benthos from the Western English Channel and (2) broad-scale and long-term studies of intertidal species around the British Isles. Case study 1 using the Marine Biological Association of the UK's English Channel data has shown the influence of climatic fluctuations on phenology (migration and breeding patterns) and has also helped to disentangle responses to fishing pressure from those driven by climate, and provided insights into ecosystem-level change in the English Channel. Case study 2 has shown recent range extensions, increases of abundance and changes in phenology (breeding patterns) of southern, warm-water intertidal species in relation to recent rapid climate change and fluctuations in northern and southern barnacle species, enabling modelling and prediction of future states. The case is made for continuing targeted sustained observations and their importance for marine management and policy development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diatoms exist in almost every aquatic regime; they are responsible for 20% of global carbon fixation and 25% of global primary production, and are regarded as a key food for copepods, which are subsequently consumed by larger predators such as fish and marine mammals. A decreasing abundance and a vulnerability to climatic change in the North Atlantic Ocean have been reported in the literature. In the present work, a data matrix composed of concurrent satellite remote sensing and Continuous Plankton Recorder (CPR) in situ measurements was collated for the same spatial and temporal coverage in the Northeast Atlantic. Artificial neural networks (ANNs) were applied to recognize and learn the complex non-monotonic and non-linear relationships between diatom abundance and spatiotemporal environmental factors. Because of their ability to mimic non-linear systems, ANNs proved far more effective in modelling the diatom distribution in the marine ecosystem. The results of this study reveal that diatoms have a regular seasonal cycle, with their abundance most strongly influenced by sea surface temperature (SST) and light intensity. The models indicate that extreme positive SSTs decrease diatom abundances regardless of other climatic conditions. These results provide information on the ecology of diatoms that may advance our understanding of the potential response of diatoms to climatic change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how invasive species spread is of particular concern in the current era of globalisation and rapid environmental change. The occurrence of super-diffusive movements within the context of Lévy flights has been discussed with respect to particle physics, human movements, microzooplankton, disease spread in global epidemiology and animal foraging behaviour. Super-diffusive movements provide a theoretical explanation for the rapid spread of organisms and disease, but their applicability to empirical data on the historic spread of organisms has rarely been tested. This study focuses on the role of long-distance dispersal in the invasion dynamics of aquatic invasive species across three contrasting areas and spatial scales: open ocean (north-east Atlantic), enclosed sea (Mediterranean) and an island environment (Ireland). Study species included five freshwater plant species, Azolla filiculoides, Elodea canadensis, Lagarosiphon major, Elodea nuttallii and Lemna minuta; and ten species of marine algae, Asparagopsis armata, Antithamnionella elegans, Antithamnionella ternifolia, Codium fragile, Colpomenia peregrina, Caulerpa taxifolia, Dasysiphonia sp., Sargassum muticum, Undaria pinnatifida and Womersleyella setacea. A simulation model is constructed to show the validity of using historical data to reconstruct dispersal kernels. Lévy movement patterns similar to those previously observed in humans and wild animals are evident in the re-constructed dispersal pattern of invasive aquatic species. Such patterns may be widespread among invasive species and could be exacerbated by further development of trade networks, human travel and environmental change. These findings have implications for our ability to predict and manage future invasions, and improve our understanding of the potential for spread of organisms including infectious diseases, plant pests and genetically modified organisms.